Name:	
-------	--

Date:		

Math 9 Honors: Assignment 6.7 Trigonometric Double Angle Properties

1. Write each of the following angles as a sum or difference of $30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}, and 360^{\circ}$ with as many different combinations as possible

a) 135°	b) 225°	c) 120°	d) 240°	e) 150°
f) 210°	g) 300°	h) 330°	i) 315°	j) 240°

2. Find the exact of the following using the double angle properties. (Do no use a calculator)

a) $\sin(120^\circ)$	b) cos(225°)
, ()	
, (2000)	n : (2100)
c) $\sin(300^{\circ})$	d) sin(210°)
e) $\cos(210^{\circ})$	f) $\cos(150^{\circ})$
g) cos(315°)	h) sin(240°)
g) cos(313)	11) SIII (240)
(1200)	(2000)
i) cos(120°)	j) cos(300°)
	

a)
$$\cos 77^{\circ} \cos 43^{\circ} - \sin 77^{\circ} \sin 43^{\circ}$$

b)
$$\sin 172^{\circ} \cos 53^{\circ} + \sin 53^{\circ} \cos 172^{\circ}$$

c)
$$\cos 122^{\circ} \cos 178^{\circ} + \sin 178^{\circ} \sin 122^{\circ}$$

- 4. Given that angle "a" is in quadrant 1 and angle "b" is in quadrant 2, If $\sin a = \frac{3}{5}$ and $\sin b = \frac{2}{5}$, then what is the value of $\sin(a+b)$? $\sin(a-b)$?
- 5. Given that angle "a" is in quadrant 2 and angle "b" is in quadrant3, If $\sin a = \frac{2}{3}$ and $\cos b = -\frac{3}{4}$, then what is the value of $\cos(a+b)$? $\cos(a-b)$?
- 6. Given that angle "a" is in quadrant 2 and angle "b" is in quadrant 4, If $\tan a = -\frac{5}{7}$ and $\tan b = \frac{-5}{6}$, then what is the value of $\sin(a+b)$? $\cos(a+b)$?

7. Determine the angle "x" such that it satisfies the equation:

a.
$$\sin(38^\circ + x) = \frac{\sqrt{2}}{2}$$

b)
$$\cos x \cos 10^{\circ} - \sin x \sin 10^{\circ} = 0.5$$

9. Use the double angle properties to prove that:
$$\cos 2x = 2\cos^2 x - 1$$

10. Use the double angle properties to prove that:
$$\cos 2x = 1 - 2\sin^2 x$$

11. Prove that
$$\sin(45^{\circ} + x) + \sin(45^{\circ} - x) = \sqrt{2}\cos x$$

12. Simplify:
$$\cos(30^{\circ} + x) \times \cos(30^{\circ} - x) - \sin(30^{\circ} + x) \times \sin(30^{\circ} - x)$$

13. If angle "a" is in quadrant 2 and
$$\sin a = \frac{1}{3}$$
, then what is the exact value of $\sin(2a)$?

14. Simplify:
$$\cos(x+90^{\circ}) - \cos(x-90^{\circ})$$